

Breast Cancer Survivors in the United States

Geographic Variability and Time Trends, 2005-2015

Roberta De Angelis, MS¹, Andrea Tavilla, MS¹, Arduino Verdecchia, ScD¹, Steve Scoppa, BS², Mark Hachey, MS², Eric J. Feuer, PhD³, and Angela B. Mariotto, PhD³

BACKGROUND: Breast cancer continues to place a significant burden on the healthcare system. Regional prevalence measures are instrumental in the development of cancer control policies. Very few population-based cancer registries are able to provide local, long-term incidence and follow-up information that permits the direct calculation of prevalence. Model-based prevalence estimates are an alternative when this information is lacking or incomplete. The current work represents a comprehensive collection of female breast cancer prevalence from 2005 to 2015 in the United States and the District of Columbia (DC).

METHODS: Breast cancer prevalence estimates were derived from state-specific cancer mortality and survival data using a statistical package called the Mortality-Incidence Analysis Model or MIAMOD. Cancer survival models were derived from the Surveillance, Epidemiology, and End Results Program data and were adjusted to represent state-specific survival. Comparisons with reported incidence for 39 states and DC had validated estimates. **RESULTS:** By the year 2010, 2.9 million breast cancer survivors are predicted in the US, equaling 1.85% of the female population. Large variability in prevalent percentages was reported between states, ranging from 1.4% to 2.4% in 2010. Geographic variability was reduced when calculating age-standardized prevalence proportions or cancer survivors by disease duration, including 0 to 2 years and 2 to 5 years. The residual variability in age-adjusted prevalence was explained primarily by the state-specific, age-adjusted breast cancer incidence rates. State-specific breast cancer survivors are expected to increase from 16% to 51% in the decennium from 2005 to 2015 and by 31% at the national level. **CONCLUSIONS:** To the authors' knowledge, the current study is the first to provide systematic estimations of breast cancer prevalence in all US states through 2015. The estimated levels and time trends were consistent with the available population-based data on breast cancer incidence, prevalence, and population aging. *Cancer* 2009;115:1954-66. © 2009 American Cancer Society.

KEY WORDS: breast neoplasms, prevalence, registries, forecasting, regional health planning.

Currently, there are an estimated 2,477,847 breast cancer survivors in the United States, and 65% of these patients have survived for ≥ 5 years since their initial diagnosis.¹ Breast cancer survivors encompass women who receive initial cancer treatments to women who receive post-treatment, routine follow-up. Increasing prevalence is a result of advances in breast cancer research, which continues to focus on

Corresponding author: Roberta De Angelis, MS, Instituto Superiore di Sanita, Centro Nazionale di Epidemiologia, Viale Regina Elena 299, Rome 00161, Italy; Fax: (011) 0039-06-49904285; roberta.deangelis@iss.it

¹National Center of Epidemiology, Italian National Institute of Health, Rome, Italy; ²Information Management Services, Inc., Silver Spring, Maryland;

³Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland

Received: April 22, 2008; **Revised:** October 23, 2008; **Accepted:** October 27, 2008

Published online: February 26, 2009 © 2009 American Cancer Society

DOI: 10.1002/cncr.24217, www.interscience.wiley.com

developing effective breast cancer screening techniques, minimizing the toxic effects of treatment, and decreasing cancer recurrence. In addition, the aging baby-boom generation and longer life expectancy experienced in the United States also will contribute to the increasing number of breast cancer survivors. Traditionally, US public health programs are developed and disseminated at the state or more local level. This research aids state authorities in making more informed decisions regarding public health programming and allocation of health resources using breast cancer prevalence estimations.

To calculate complete prevalence, a long history of cancer incidence and follow-up data are necessary. To date, only a few US states have collected this type of data, therefore a statistical method was applied to the consistent data available for all states. The Mortality-Incidence Analysis Model (MIAMOD) method uses state-specific mortality (breast cancer and all causes) data and modeled state-specific survival as inputs to derive incidence and complete prevalence estimates and projections. Estimates were validated by comparisons with reported incidence data for 39 states and the District of Columbia (DC) provided by cancer registration programs. For the remaining states that were not covered by cancer registration, MIAMOD incidence estimates were compared with estimates derived from a different methodology: an ecologic regression model of incidence on sociodemographic variables.² In this article, we investigated the variability in breast cancer prevalence by state that is correlated with different demographic structure and breast cancer incidence patterns at the state level.

MATERIALS AND METHODS

Mortality and Population Data

Single age and year state-specific female mortality data for breast cancer and all causes of death from the National Center of Health Statistics and respective populations from the US Census Bureau are available for calendar years from 1969 to 2005 from the Surveillance, Epidemiology, and End Results (SEER)*Stat databases.^{3,4} The state population projections from 2006 to 2015 were obtained from the US Census Bureau.⁵

State-specific Breast Cancer Survival Model: The Surveillance, Epidemiology, and End Results Baseline Model

Data from 1975 to 2004 from the 9 initial SEER Program registries (SEER-9)⁴ were used to calculate female breast cancer relative survival rates by 3-year period of diagnosis (1975-1977, 1978-1980,..., 2002-2004) and by age at diagnosis (ages 15-44 years, 45-54 years, 55-64 years, 65-74 years, 75-99 years, and ≥ 85 years).⁴ Because cancer survival information was needed before 1975 to include all past diagnosis years, we fit the data to a parametric Weibull cure model,^{6,7} which is described in detail in a technical report.⁸

State-specific Relative Risk of Breast Cancer Death

We adjusted the SEER baseline survival to represent state-specific survival by applying state-specific relative risks that reflected a greater or smaller risk of breast cancer death in a specific state relative to the SEER-9 areas. The method, which was proposed by Mariotto et al,⁹ consists of regressing 5-year breast cancer survival on sociodemographic variables for all counties in the SEER-9 areas. Once the regression model is estimated, state-specific 5-year survival is calculated by extrapolating the model to sociodemographic variables by county at the state level. Data sources on this specific application are described in a technical report.⁸

Estimation of Incidence and Prevalence by State: The Mortality-Incidence Analysis Model Method

State-specific breast cancer prevalence and incidence were estimated from state-specific mortality and population data and from the survival model described above using the MIAMOD method.^{10,11} The method is based on equations relating mortality and prevalence for a given cancer to incidence and survival probabilities. The model assumes that survival is known, as estimated above, and that cancer incidence follows an age, period, and cohort (APC) model on the logistic scale. The APC incidence parameters are estimated from a Poisson generalized linear regression model on breast cancer deaths. Once incidence is estimated, prevalence can be calculated from incidence

and survival. Further details on the method are given in a technical report.⁸

Prevalence Projections, 2006 to 2015

MIAMOD prevalence projections from 2006 to 2015 were based on assumptions of future trends of survival, incidence, population, and other causes mortality. It was assumed that *survival* was constant with rates equal to those estimated for the last period of data, 2004. *Incidence* was projected using the previously estimated age and cohort incidence model. This model describes slow changes in incidence, mostly the effect of risk factors, but no period changes. The *population projections* were based on the general assumption that recent state-specific trends in fertility, mortality, domestic migration, and international migration will continue.⁵ *Other causes mortality* also was assumed to be constant, as observed in the last years of observed data.

Population denominators were not available for annual ages after age 84 years. Prevalence for ages ≥ 85 years was estimated by applying prevalence proportions at ages 80 to 84 years to the populations of women aged ≥ 85 years. The age-adjusted rates were based on the US 2000 standard population.

Validation of Mortality-Incidence Analysis Model Estimates

MIAMOD estimates of breast cancer incidence cases were compared with reported cases for which data were available. For 9 states participating in the SEER Program, data were available through 2005 with different starting years. An incidence database was obtained through an agreement with the North American Association of Central Cancer Registries (NAACCR). US cancer registries that report data to the NAACCR participate in the SEER Program, or the Centers for Disease Control and Prevention National Program of Cancer Registries (NPCR), or both and receive support from the state, province, or territory where they are located. The NPCR states that participated in this study were those that met NAACCR registry certification standards for providing complete, accurate, and timely data for at least 3 consecutive years during 1995 to 2003 and agreed to release incidence data for this project (30 states and DC).¹² The start and end years of available

data varied, and first breast cancers were calculated from the respective database. Table 1 displays the data source and range of years compared for each state. For the remaining 11 states, no reported cases were available, so we compared MIAMOD estimates with independent incidence estimates from ecologic regression analysis at the county level.²

Because the MIAMOD estimates represent individual counts rather than tumor counts, we compared the incidence of first breast cancers reported in the respective databases. The determination of first cancers depends on the length of the registration period. For example, a woman who was diagnosed with 2 breast cancers in 1992 and 1998 would be recorded as a case in 1992 if she resided in 1 of the SEER states and in 1998 if she lived in 1 of the NPCR regions.

For each state, we calculated the mean absolute percentage difference (MAPD) between the MIAMOD estimated (e_y) and reported (o_y) number of breast cancer cases diagnosed up to age 84 years over years $y = y_1, \dots, y_m$:

$$MAPD = \frac{100 \sum_{y=y_1}^{y_n} |e_y - o_y| / o_y}{(y_n - y_1 + 1)}$$

For the 5 SEER states (Connecticut, New Mexico, Hawaii, Iowa, and Utah) 30-year limited duration prevalent cases from MIAMOD were compared with the corresponding reported values⁴ (Table 1).

RESULTS

For 48 of the 51 states, the estimated number of new breast cases was consistent with reported data within 10% of the MAPD value (Table 1). Larger discrepancies were observed in Utah (10.8%), Arkansas (13.2%), and Wyoming (18.9%); note that the latter had a quite small population and that Arkansas was compared with different estimates,² subject to its own sources of errors. Estimated and reported 30-year prevalent cases in 2005 were reasonably close (absolute percentage difference, 1%-8%) in the SEER states, except in Utah, where breast cancer survivors were fairly overestimated (absolute percentage difference, 21.4%).

Table 1. Validation of Mortality-Incidence Analysis Model Estimates Against Reported Data From the Surveillance, Epidemiology, and End Results, National Program of Cancer Registries, and Cancer Incidence in North America Databases and From Ecologic Regression Incidence Estimations: Ages 0 to 84 Years*,†

Stage	Data Source for Comparison	Period of Diagnosis	Incident Cases			Survivors at July 2005			
			Estimated	Reported‡	Percentage MAPD (%>MAPD)	Estimated	Reported§	APD, %	
Alabama	NPCR	1998-2003	15,979	16,645	6.8 (50)				
Alaska	NPCR	1996-2003	2319	2489	7.8 (38)				
Arizona	NPCR	1995-2002	23,637	23,742	3.5 (50)				
Arkansas	Ecologic	1995-2003	13,453	15,485	13.2 (63)				
California	SEER	1988-2005	311,625	321,348	7.0 (44)				
Colorado	NPCR	1995-2003	22,487	22,721	3.8 (44)				
Connecticut	SEER	1975-2005	63,174	65,781	7.2 (45)	28,310	30,613	7.5	
Delaware	NPCR	1995-2003	4933	4828	5.4 (33)				
District of Columbia	NPCR	1999-2003	2148	1999	7.8 (40)				
Florida	NPCR	1995-2003	110,642	105,347	6.3 (33)				
Georgia	NPCR¶	1999-2003	22,780	23,974	6.0 (60)				
Hawaii	SEER	1975-2005	15,558	16,670	9.3 (45)	9,466	9,794	3.3	
Idaho	NPCR	1995-2003	6237	6700	7.5 (56)				
Illinois	NPCR	1995-2003	70,436	71,893	5.0 (44)				
Indiana	NPCR	1998-2003	23,010	23,389	6.3 (50)				
Iowa	SEER	1975-2005	51,355	51,549	5.3 (26)	22,692	22,984	1.3	
Kansas	Ecologic	1995-2003	15,577	15,595	3.4 (38)				
Kentucky	SEER	1995-2005	26,550	27,887	8.0 (45)				
Louisiana	SEER	1995-2005	26,843	28,453	8.9 (55)				
Maine	NPCR	1995-2003	8041	8317	4.0 (44)				
Maryland	Ecologic	1995-2003	32,745	32,555	4.1 (38)				
Massachusetts	NPCR	1997-2003	33,570	33,495	4.6 (43)				
Michigan	NPCR#	1995-2003	59,631	59,320	6.0 (33)				
Minnesota	NPCR	1995-2003	27,149	28,545	6.1 (56)				
Mississippi	Ecologic	1995-2003	13,343	14,205	7.4 (63)				
Missouri	NPCR	1998-2003	22,595	22,561	4.2 (50)				
Montana	NPCR	1996-2003	4996	4962	6.9 (38)				
Nebraska	NPCR	1995-2003	10,133	9979	2.8 (33)				
Nevada	Ecologic	1995-2003	9508	9530	4.1 (38)				
New Hampshire	NPCR	1999-2003	4412	4395	4.1 (40)				
New Jersey	SEER	1979-2005	139,468	143,487	7.6 (48)				
New Mexico	SEER	1975-2005	22,342	21,739	6.7 (39)	12,052	11,180	7.8	
New York	NPCR	1995-2003	110,326	115,968	6.2 (56)				
North Carolina	NPCR	2001-2003	16,495	15,389	7.6 (33)				
North Dakota	Ecologic	1995-2003	3847	4010	4.7 (63)				
Ohio	Ecologic	1995-2003	71,478	68,853	3.9 (38)				
Oklahoma	NPCR	1997-2003	16,107	16,189	4.6 (43)				
Oregon	NPCR	1996-2003	19,662	19,987	5.5 (50)				
Pennsylvania	Ecologic	1995-2003	82,289	82,407	3.9 (50)				
Rhode Island	NPCR	1995-2003	6752	6695	3.4 (33)				
South Carolina	NPCR	1997-2003	17,323	18,103	6.2 (43)				
South Dakota	NPCR	2001-2003	1428	1507	7.9 (33)				
Tennessee	Ecologic	1995-2003	31,118	31,522	4.4 (50)				
Texas	NPCR	1995-2003	90,909	96,524	7.2 (56)				
Utah	SEER	1975-2005	22,854	20,532	10.8 (35)	12,816	10,557	21.4	
Vermont	Ecologic	1995-2003	3629	3703	3.5 (63)				
Virginia	Ecologic	1995-2003	41,314	40,287	3.9 (25)				
Washington	NPCR**	1995-2003	35,988	36,524	3.6 (33)				
West Virginia	NPCR	1995-2003	10,557	11,223	7.9 (56)				
Wisconsin	NPCR	1995-2003	32,952	32,319	4.0 (22)				
Wyoming	NPCR	1995-2001	2262	1913	18.9 (43)				

MAPD indicates mean absolute percentage difference; APD, absolute percentage difference; NPCR, National Program of Cancer Registries; SEER, Surveillance, Epidemiology, and End Results Program of the National Cancer Institute.

* For SEER data, see SEER Program 2007⁴; for Cancer Incidence in North America data, see North American Association of Central Cancer Registries 2008¹²; and, for ecologic regression incidence estimation data, see Pickle & Su 2002.¹³

† Incidence validation: For the years with incidence data, the total number of estimated and reported first breast cancer cases, the MAPD (in %) between estimated and reported cases over the period of diagnosis, and the percentage of years in which the year-specific APD values exceeded MAPD value (% >MAPD) were calculated. For prevalence validation, the APD was calculated between estimated and reported numbers of first breast cancer survivors on July 1, 2005 (see SEER Program 2007⁴).

‡ See SEER Program 2007,⁴ North American Association of Central Cancer Registries 2008,¹² and Pickle & Su 2002.¹³

§ See SEER Program 2007.⁴

|| These states receive funding from both SEER and NPCR Programs.

¶ The SEER Atlanta Cancer Registry contributes data to the NPCR registry of the state of Georgia.

The SEER Detroit Cancer Registry contributes data to the NPCR registry of the state of Michigan.

**The SEER Seattle Cancer Registry contributes data to the NPCR registry of the state of Washington.

We estimate that there were 2.4 million breast cancer survivors in the United States in 2005 (Table 2), a number very similar to the published 2005 prevalence estimate of 2,477,847 survivors.¹ Crude prevalence proportions varied by state, ranging from 1.15% (Alaska) to 2.03% (Florida), because of differences among states in breast cancer incidence, survival, and population age structure. The geographic variability of prevalence also was high among younger women and older women, ranging from 0.55% to 0.94% in women aged <65 years and between 4.7% and 8.3% for patients aged ≥65 years. On average, 17% and 21% of the total 2005 US breast cancer prevalent cases are women diagnosed in the previous 2 years and between 2 and 5 years, respectively. These percentages are quite stable between US states (range, 15%-19% and 19%-23%, respectively). The proportion of short-term survivors is higher in the younger age group (22% within 2 years and 25% between 2 and 5 years) than in the older age group (14% and 18%, respectively). The higher proportion of long-term survivors in the elderly reflects the overall favorable prognosis of breast cancer.

Figure 1 displays the age-adjusted female breast cancer prevalent percentage (Fig. 1A) and its percentage increase from 2005 to 2015 (Fig. 1B) for all US states. The southern states, except Florida, have a lower age-adjusted prevalence compared with the northern states. Conversely, it is predicted that southern states will have a higher increase in age-adjusted prevalence.

Figure 2 displays micromaps of age-adjusted breast cancer prevalence, age-adjusted incidence, crude prevalence proportions, and percentage of the female population aged >65 years by US state in 2010. The maps are ordered by age-adjusted prevalent percentage. After adjusting by age, between-state variability in crude prevalence (1.4%-2.4%) is reduced (1.3%-1.8%). Age-adjusted prevalence clearly is correlated more with incidence (0.83 correlation) than with the elderly population (0.25 correlation), whereas crude prevalence is correlated both with incidence (0.73) and the with population aged ≥65 years (0.80 correlation).

Breast cancer survivors are expected to continue growing from 2005 to 2015 in all US states (Table 3), producing an overall increase of almost 1 million survivors in just a decennium (from 2,403,000 to 3,421,000). The percentage of survivors (among the population) will

increase from 1.6% in 2005 to 2.1% in 2015. Although the number of survivors diagnosed within 5 years is expected to increase (by 28% in absolute terms), it is expected to represent a lower proportion of the overall survivors (from 37% in 2005 to 33% in 2015), indicating that prevalence is increasing because of higher numbers of long-term survivors.

A geographic comparison of breast cancer prevalence dynamics from 2005 to 2015 is represented in Figure 3. The corresponding dynamics of incidence and of the elderly female population also are displayed to interpret the geographic variability. Age-adjusted cancer prevalence (Fig. 3, column 1) will increase by a percentage varying from 8% to 32%, whereas the crude prevalence (Fig. 3, column 3) will increase from 16% to 51%, depending on the state. The state ranking of age-adjusted prevalence increase is highly correlated with the ranking of estimated incidence increases (from -3% to 18%) (Fig. 3, column 2). Note that the states with prevalence growth <15% (the first 20 states shown in Fig. 3, column 1) are those in which the age-adjusted incidence is expected to reduce or stabilize (percentage increases <5%) (Fig. 3, column 2). Some of the differences in ranking between the percentage increase in age-adjusted and crude prevalence can be explained by aging (Fig. 3, column 4). For example, in Alaska, for the top value in population aging, the percentage increase of prevalence moves from 49 to 26 when it is adjusted by age.

DISCUSSION

To our knowledge, this is the first time that the number of women living with breast cancer in the United States has been estimated in a systematic way for all US states. These estimates represent the total breast cancer prevalence, including all women with a past diagnosis of breast cancer. This study includes estimates by age and years since diagnosis as well as cancer prevalence projections up to 2015.

The number of women living with breast cancer in 2005 ranged from 3691 in Alaska to 261,883 in California. Crude prevalence varied between 1.15% in Alaska and 2.03% in Florida. These numbers are influenced by the state population size and the proportion of elderly population. The age-adjusted prevalent percentage is useful for removing discrepancies caused by differences in population age structure and for producing interesting

Table 2. State-Specific and Total United States Estimates of Crude Breast Cancer Prevalence in 2005 by Year Since Diagnosis and Age at Prevalence*

State	All Ages			Aged <65 y			Aged ≥65 y			Total No. of Survivors (SE)		
	Percentage of the Population			Percentage of the Population Aged <65 y			Percentage of the Population Aged ≥65 y					
	Years Since Dx	0-2	2-5	Total	Years Since Dx	0-2	2-5	Total	Years Since Dx	0-2	2-5	Total
Alabama	32,152 (182)	0.25	0.30	1.37	14,148 (125)	0.16	0.18	0.71	18,004 (132)	0.75	0.93	5,02
Alaska	3,691 (74)	0.21	0.25	1.15	2,040 (57)	0.15	0.18	0.68	1,651 (48)	0.98	1.24	7.14
Arizona	45,364 (250)	0.26	0.32	1.52	18,136 (56)	0.15	0.18	0.71	27,228 (196)	0.89	1.16	6,43
Arkansas	19,053 (133)	0.24	0.29	1.35	8,003 (87)	0.15	0.17	0.67	11,049 (100)	0.76	0.93	4,94
California	261,883 (622)	0.23	0.29	1.45	110,672 (424)	0.15	0.17	0.70	151,211 (455)	0.83	1.10	6,81
Colorado	35,092 (240)	0.26	0.31	1.52	15,623 (169)	0.16	0.19	0.76	19,469 (171)	1.01	1.28	7.40
Connecticut	34,237 (228)	0.30	0.38	1.90	13,057 (150)	0.18	0.22	0.86	21,180 (171)	0.97	1.31	7.64
Delaware	7728 (92)	0.30	0.37	1.78	2,971 (55)	0.16	0.19	0.81	4,757 (74)	1.09	1.36	7.41
District of Columbia	5274 (62)	0.29	0.36	1.71	2,310 (41)	0.19	0.22	0.87	2,964 (46)	0.92	1.21	6.78
Florida	183,952 (581)	0.33	0.41	2.03	69,171 (369)	0.19	0.23	0.94	114,780 (448)	0.92	1.17	6.80
Georgia	55,733 (257)	0.22	0.26	1.20	27,132 (185)	0.15	0.17	0.66	28,601 (179)	0.81	1.01	5.46
Hawaii	10,955 (159)	0.26	0.34	1.72	4,724 (108)	0.18	0.21	0.88	6,231 (117)	0.72	1.01	6.27
Idaho	10,296 (106)	0.23	0.29	1.45	4,231 (68)	0.14	0.17	0.68	6,065 (80)	0.86	1.12	6.71
Illinois	104,044 (353)	0.26	0.33	1.60	41,072 (230)	0.16	0.18	0.74	62,972 (268)	0.93	1.22	6.98
Indiana	49,490 (248)	0.26	0.32	1.56	19,433 (159)	0.15	0.18	0.71	30,056 (190)	0.89	1.16	6.58
Iowa	28,146 (187)	0.29	0.37	1.87	9,648 (110)	0.16	0.19	0.77	18,498 (152)	0.93	1.24	7.25
Kansas	23,908 (179)	0.28	0.35	1.73	9,001 (115)	0.17	0.19	0.76	14,907 (138)	0.96	1.24	7.18
Kentucky	30,165 (178)	0.25	0.30	1.42	12,676 (117)	0.15	0.18	0.70	17,489 (135)	0.83	1.06	5.64
Louisiana	27,685 (132)	0.23	0.27	1.23	12,293 (88)	0.14	0.16	0.63	15,393 (99)	0.78	0.94	5.03
Maine	12,456 (118)	0.31	0.38	1.85	4,844 (75)	0.18	0.21	0.86	7,611 (91)	0.96	1.23	6.92
Maryland	47,170 (230)	0.29	0.35	1.63	21,063 (154)	0.18	0.21	0.84	26,108 (171)	1.01	1.27	6.96
Massachusetts	65,116 (315)	0.31	0.39	1.96	24,172 (203)	0.18	0.21	0.86	40,943 (241)	1.04	1.37	8.04
Michigan	87,491 (312)	0.29	0.36	1.71	36,552 (203)	0.18	0.21	0.83	50,339 (236)	0.97	1.26	7.00
Minnesota	43,482 (244)	0.27	0.34	1.69	17,123 (156)	0.16	0.19	0.77	26,359 (188)	0.92	1.23	7.37
Mississippi	18,359 (143)	0.23	0.28	1.23	8,402 (100)	0.15	0.17	0.66	9,957 (102)	0.71	0.91	4.70
Missouri	48,058 (236)	0.28	0.34	1.62	18,948 (155)	0.16	0.19	0.75	29,110 (178)	0.92	1.15	6.43
Montana	8661 (113)	0.30	0.37	1.85	3,339 (70)	0.18	0.21	0.84	5,322 (88)	0.98	1.26	7.46
Nebraska	16,376 (141)	0.28	0.36	1.85	5,811 (84)	0.16	0.19	0.77	10,565 (113)	0.94	1.28	7.79
Nevada	16,408 (134)	0.22	0.28	1.38	6,928 (86)	0.14	0.16	0.66	9,480 (102)	0.84	1.10	6.58
New Hampshire	11,684 (127)	0.29	0.35	1.76	4,650 (82)	0.17	0.20	0.81	7,034 (97)	1.02	1.29	7.64
New Jersey	79,718 (321)	0.29	0.36	1.79	29,991 (207)	0.17	0.20	0.79	49,727 (246)	0.97	1.29	7.48
New Mexico	14,001 (134)	0.24	0.30	1.43	5,901 (85)	0.15	0.17	0.70	8,100 (103)	0.85	1.09	6.14
New York	160,915 (429)	0.27	0.33	1.62	62,243 (287)	0.16	0.18	0.73	98,672 (319)	0.91	1.15	6.61
North Carolina	66,446 (248)	0.27	0.32	1.50	29,402 (165)	0.17	0.20	0.77	37,044 (185)	0.87	1.07	5.95
North Dakota	5844 (78)	0.31	0.37	1.85	1,966 (44)	0.16	0.19	0.75	3,878 (64)	1.02	1.25	7.23
Ohio	105,951 (378)	0.29	0.37	1.80	40,146 (242)	0.17	0.20	0.81	65,804 (290)	0.97	1.28	7.30
Oklahoma	29,431 (178)	0.29	0.35	1.64	11,973 (115)	0.17	0.20	0.78	17,458 (136)	1.17	1.41	6.41

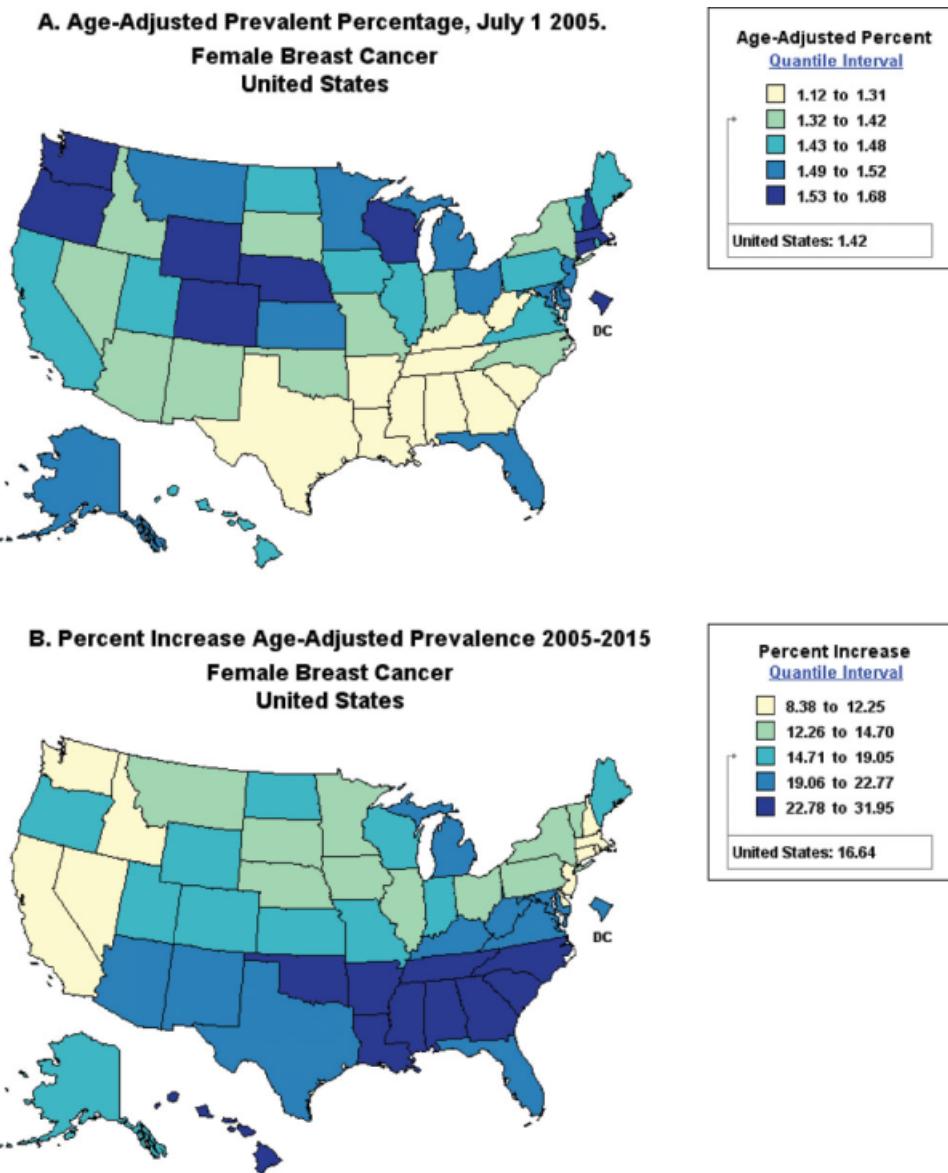

(continued)

Table 2. (continued)

State	All Ages			Aged <65 y			Aged ≥65 y		
	Total No. of Survivors (SE)	Percentage of the Population		Years Since Dx	Percentage of the Population Aged <65 y		Years Since Dx	Percentage of the Population Aged ≥65 y	
		0-<2	2-<5		0-<2	2-<5		0-<2	2-<5
Oregon	34,710 (264)	0.31	0.39	1.90	13,743 (176)	0.19	0.22	0.88	20,967 (197)
Pennsylvania	123,126 (401)	0.31	0.39	1.93	42,730 (245)	0.17	0.20	0.81	80,396 (317)
Rhode Island	10,048 (110)	0.29	0.37	1.81	3,567 (66)	0.16	0.19	0.77	6,481 (88)
South Carolina	31,683 (193)	0.26	0.31	1.45	14,180 (134)	0.17	0.19	0.76	17,503 (139)
South Dakota	6573 (80)	0.27	0.33	1.69	2,422 (49)	0.15	0.18	0.75	4,151 (64)
Tennessee	45,007 (244)	0.26	0.32	1.48	19,482 (165)	0.17	0.19	0.75	25,525 (180)
Texas	135,608 (416)	0.21	0.25	1.18	61,177 (293)	0.13	0.15	0.60	74,431 (296)
Utah	14,879 (155)	0.21	0.25	1.20	6,183 (104)	0.12	0.14	0.55	8,696 (115)
Vermont	5660 (76)	0.29	0.36	1.79	2,277 (50)	0.18	0.21	0.85	3,383 (58)
Virginia	61,561 (279)	0.28	0.34	1.60	27,456 (193)	0.18	0.21	0.82	34,106 (202)
Washington	57,580 (339)	0.30	0.37	1.82	23,790 (229)	0.18	0.22	0.87	33,790 (251)
West Virginia	14,602 (127)	0.28	0.34	1.58	5,507 (80)	0.16	0.18	0.72	9,095 (98)
Wisconsin	50,948 (247)	0.30	0.38	1.83	19,617 (156)	0.18	0.21	0.83	31,332 (192)
Wyoming	4428 (73)	0.31	0.37	1.76	1,723 (44)	0.17	0.20	0.79	2,705 (57)
US	2,402,826 (1791)	0.27	0.33	1.60	973,647 (180)	0.16	0.19	0.75	1,429,179 (1347)

Dx indicates diagnosis; SE, standard error.

* Listed are the total number of cancer survivors, the SE, and the crude percentage proportion of the population.

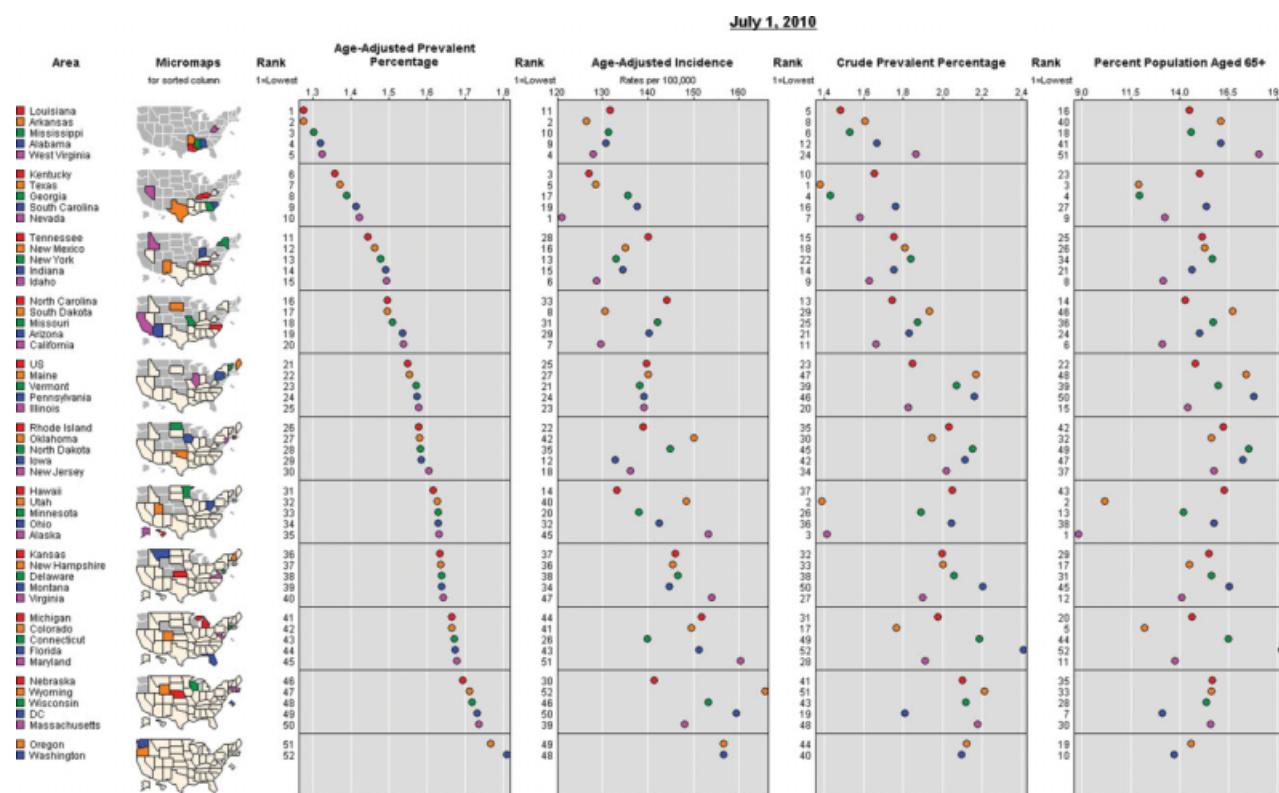


FIGURE 1. Female breast cancer age-adjusted prevalent percentage in 2005 (A) and percentage increase of age-adjusted prevalent percentage from 2005 to 2015 (B) by US state.

geographic patterns. The southern states, with the exception of Florida, have lower prevalence compared with the northern states. However, it is predicted that they will have a higher increase in prevalence in the next 10 years compared with the northern states. Studies on risk factors have revealed a positive correlation between patterns of mammography use and income^{13,14} that may explain part of the south-north disparity. A variable proportion of breast cancer survivors (range, 35%-42%) had been diagnosed within the previous 5 years. This proportion is

lower for the population aged ≥ 65 years, in which long-term survivors represent the large majority.

The prevalence estimates and projections presented here were based on a statistical method (MIAMOD)¹⁰ that uses state-specific information on cancer mortality and survival. This method was used because it permitted a uniform estimation of breast cancer prevalence across all the US states using available data. When a long series of historic incidence is available, other methods¹⁵⁻¹⁷ can be used. Except for few states that participate in the SEER

FIGURE 2. Geographic comparison of the breast cancer burden in 2010 by US state: Shown are the age-adjusted prevalent percentage (%), the age-adjusted incidence rates per 100,000 population, the crude prevalent percentage (%), and the percentage proportion of the population aged >65 years (%). The micromaps are ranked by age-adjusted prevalent percentage.

Program, the application of these methods is not feasible. However, for most of the US states, a short and varying series of incidence data from either SEER or NPCR is available. The comparison of MIAMOD incidence estimates against the reported incidence series produced similar numbers for most of the states. The exceptions were Utah and Wyoming. Comparable results, except for Arkansas, also were observed for the remaining 11 states compared with independent incidence estimates. Generally, MIAMOD incidence underestimated the reported data. This is consistent with intrinsic limitations of the reported incidence series in determining the first cancers, depending on the length of the registration period.

The 2005 US breast cancer prevalence estimate, which was calculated by summing state estimates, was very similar to a published estimate of 2,477,847.¹ The finding that 2 distinct methods yielded similar estimates is reassuring.

In this work, we defined an individual as a survivor from the moment of diagnosis. Also, the registries data

were based on cancer diagnosis. Although this definition is becoming the most prevalent, statistics based on it may not capture all individuals who are affected by cancer, such as family members and caregivers who are impacted by the survivorship experience.¹⁸

Several limitations are noteworthy. First, the MIAMOD method relies on accurate estimates of mortality and survival. No particular quality problem is reported for breast cancer mortality data by state. However, survival data are not available for the majority of the states and are estimated. The baseline survival model, which reflects SEER survival, has demonstrated a good fit to survival data (results not shown) over a 30-year period of diagnosis and for all age groups. State-specific survival was estimated using relative risks that reflected a higher or smaller risk of breast cancer death compared with SEER. The estimates were obtained through an ecologic regression analysis of breast cancer survival on sociodemographic variables at the county level. Although cross-validation⁹ analysis indicated that the survival estimates generally provided a

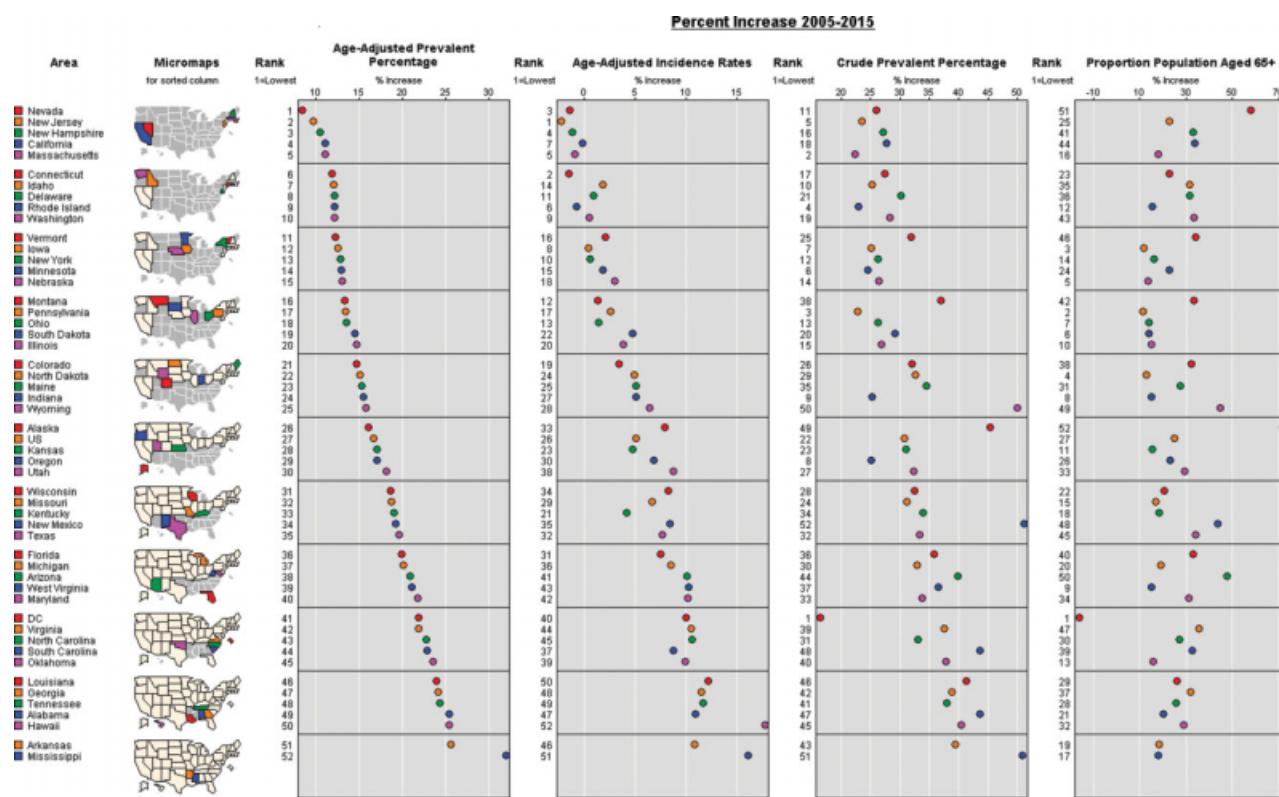
Table 3. Projections 2005 to 2015 of State-specific and Total United States Breast Cancer Prevalence (Absolute Numbers of Survivors and Crude Percentage Proportions of the Population) and the Prevalence of Those Diagnosed in the Previous 5 Years*

State	2005	2010	2015	No. of Survivors			Percentage of the Population			No. of Survivors Diagnosed <5 Years Previously		
				Increase 2005-2015, %	2005	2010	2015	Increase 2005-2015, %	2005	2010	2015	Increase 2005-2015, %
Alabama	32,152	39,615	47,480	48	1.37	1.67	1.97	44	12,783	14,798	16,708	31
Alaska	3691	4805	6037	64	1.15	1.41	1.67	45	1496	1826	2158	44
Arizona	45,364	60,596	79,589	75	1.52	1.83	2.13	40	17,218	21,928	27,440	59
Arkansas	19,053	23,584	28,393	49	1.35	1.61	1.88	39	7594	8858	10,069	33
California	261,883	319,284	374,875	43	1.45	1.66	1.85	28	93,610	107,884	119,724	28
Colorado	35,092	42,185	49,905	42	1.52	1.76	2.00	32	13,291	15,129	16,929	27
Connecticut	34,237	40,360	45,597	33	1.90	2.19	2.43	27	12,352	13,707	14,646	19
Delaware	7728	9418	11,176	45	1.78	2.06	2.32	30	2894	3347	3772	30
District of Columbia	5274	5031	5264	0	1.71	1.81	1.99	16	2009	1820	1810	-10
Florida	183,952	237,226	299,105	63	2.03	2.41	2.76	36	66,388	81,435	97,595	47
Georgia	55,733	68,910	85,643	54	1.20	1.43	1.67	39	22,552	26,245	30,847	37
Hawaii	10,955	13,734	16,749	53	1.72	2.05	2.41	40	3838	4564	5286	38
Idaho	10,296	12,306	14,775	43	1.45	1.63	1.82	25	3711	4231	4834	30
Illinois	104,044	119,746	135,069	30	1.60	1.83	2.03	27	38,408	41,790	44,838	17
Indiana	49,490	56,796	64,343	30	1.56	1.75	1.95	25	18,384	19,971	21,548	17
Iowa	28,146	32,241	35,940	28	1.87	2.11	2.34	25	9924	10,781	11,428	15
Kansas	23,908	28,093	32,286	35	1.73	2.00	2.26	31	8784	9816	10,732	22
Kentucky	30,165	35,857	41,850	39	1.42	1.65	1.90	34	11,763	13,113	14,395	22
Louisiana	27,685	35,053	41,692	51	1.23	1.48	1.74	41	11,266	13,463	15,163	35
Maine	12,456	15,113	17,741	42	1.85	2.17	2.49	34	4633	5330	5947	28
Maryland	47,170	58,600	70,643	50	1.63	1.91	2.19	34	18,594	21,748	24,861	34
Massachusetts	65,116	75,214	84,410	30	1.96	2.18	2.40	22	23,332	25,552	27,219	17
Michigan	87,491	104,441	121,579	39	1.71	1.98	2.27	33	33,330	37,606	41,565	25
Minnesota	43,482	51,306	59,517	37	1.69	1.89	2.10	25	15,562	17,437	19,229	24
Mississippi	18,359	23,316	28,796	57	1.23	1.53	1.86	51	7577	9064	10,566	39
Missouri	48,058	56,791	65,964	37	1.62	1.87	2.13	31	18,308	20,493	22,592	23
Montana	8661	10,710	12,759	47	1.85	2.20	2.54	37	3118	3646	4108	32
Nebraska	16,376	18,760	21,078	29	1.85	2.10	2.33	26	5665	6184	6647	17
Nevada	16,408	21,179	26,770	63	1.38	1.58	1.74	26	5947	7345	8859	49
New Hampshire	11,684	14,050	16,553	42	1.76	2.00	2.24	27	4258	4841	5384	26
New Jersey	79,718	93,457	104,940	32	1.79	2.02	2.21	24	28,812	31,805	33,867	18
New Mexico	14,001	18,405	22,808	63	1.43	1.81	2.17	51	5293	6568	7692	45
New York	160,915	184,633	206,000	28	1.62	1.84	2.04	26	59,759	64,486	68,006	14
North Carolina	66,446	82,561	101,280	52	1.50	1.74	2.00	33	25,943	30,518	35,508	37
North Dakota	5844	6814	7727	32	1.85	2.15	2.45	33	2133	2376	2567	20
Ohio	105,951	121,128	135,202	28	1.80	2.05	2.28	26	38,795	41,923	44,403	14
Oklahoma	29,431	35,420	41,790	42	1.64	1.95	2.26	38	11,386	12,968	14,498	27
Oregon	34,710	40,472	47,912	38	1.90	2.12	2.37	25	12,798	14,216	16,049	25
Pennsylvania	123,126	140,313	155,601	26	1.93	2.16	2.37	23	44,414	47,939	50,566	14
Rhode Island	10,048	11,766	13,167	31	1.81	2.03	2.23	23	3642	3987	4215	16

(continued)

Table 3. (continued)

State	No. of Survivors			Percentage of the Population			No. of Survivors Diagnosed <5 Years Previously					
	2005	2010	2015	Increase 2005-2015, %	2005	2010	2015	Increase 2005-2015, %	2005	2010	2015	Increase 2005-2015, %
South Carolina	31,683	40,129	49,665	57	1.45	1.76	2.09	44	12,532	14,932	17,385	39
South Dakota	6573	7585	8680	32	1.69	1.93	2.19	29	2312	2546	2779	20
Tennessee	45,007	56,052	68,081	51	1.48	1.75	2.04	38	17,775	20,880	24,023	35
Texas	135,608	170,931	210,659	55	1.18	1.38	1.57	33	53,031	63,069	73,580	39
Utah	14,879	17,925	22,058	48	1.20	1.38	1.59	32	5633	6506	7671	36
Vermont	5660	6836	8022	42	1.79	2.07	2.36	32	2072	2365	2632	27
Virginia	61,561	77,558	95,102	54	1.60	1.90	2.20	38	23,946	28,448	33,098	38
Washington	57,580	68,897	81,823	42	1.82	2.09	2.34	28	21,091	23,887	26,826	27
West Virginia	14,602	17,398	19,968	37	1.58	1.86	2.15	37	5666	6364	6949	23
Wisconsin	50,948	61,265	72,035	41	1.83	2.12	2.43	33	19,035	21,783	24,446	28
Wyoming	4428	5736	6967	57	1.76	2.21	2.64	50	1719	2450	42	42
All US states	2,402,826	2,899,601	3,421,070	42	1.60	1.85	2.09	31	896,364	1,023,636	1,146,208	28


*The percentage increase from 2005 to 2015 is reported for all indicators.

good fit, the ecologic associations inherent in these models may not fit well in every state. Also, it is possible that, for some states, we were not able to capture other differences that may exist between SEER and a specific state¹⁹, however the lack of survival data makes this models a viable option.

Second, prevalence estimates were based on an APC incidence model estimate. Although the APC model is flexible enough to fit a variety of incidence dynamics, it is back-calculated from mortality and survival dynamics. Survival improvements, which are particularly relevant for breast cancer, are captured well in the baseline survival model. The long mortality time series used in this study allowed for the estimation of robust incidence age and cohort effects. However, because of the latency between incidence and mortality, the back-calculation method is not able to capture the recent changes in incidence, like changes associated with the reduced use of hormone-replacement therapy²⁰ in recent years. Thus, this reduction was not represented in the prevalence projection from 2006 to 2015. For the projections, we assumed no period effect. Nevertheless, a reduction and stabilization of incidence was estimated in 16 states.

Third and finally, the projections were based on several assumptions: flat survival rates after 2004, dynamic population projection, constant other causes mortality, and incidence varying according to the estimated age and cohort effects. This assumption attempts to capture age and risk factor effects on breast cancer incidence, eliminating period effects from the projections, such as screening, because temporal trends are more difficult to forecast.

According to these assumptions, the number of breast cancer survivors is expected to grow in all states at various increasing rates (from 20% to 50% in the decennium 2005-2015). It is estimated that age-adjusted incidence will drop slightly or flatten from 2005 to 2015 in about 20 US States (those with percentage increases <5%) (Fig. 3, column 2), and this partially reduces prevalence growth. These states are located mostly on the eastern and western coast and in northern areas: those with highest breast cancer incidence and prevalence rates and with higher use of mammography screening.¹³ We predicted a higher increase in southern states. This may be associated with an increase in the use of screening mammography (because levels were low in the past) and with high obesity and smoking rates,¹³ which are known risk

FIGURE 3. Geographic comparison of projected breast cancer dynamics in the decennium from 2005 to 2015: Shown are the percentage increases from 2005 to 2015 in the age-adjusted prevalent percentage (%), the age-adjusted incidence rates (%), the crude prevalent percentage (%), and the population aged ≥ 65 years (%). The micromaps are ranked by the percentage increase in the age-adjusted prevalence proportion.

factors for breast cancer. Breast cancer survivors in 2015 are expected to be older than in 2005 because of population aging and to have a longer disease history, eg, a higher proportion of patients diagnosed >5 years previously (Table 3).

These estimates provide an order of magnitude assessment of the breast cancer burden and can be used by policy makers and health authorities to inform decisions about the allocation of funds, identifying priorities, and planning more targeted cancer control strategies. Given the estimated projections, breast cancer burden will continue to represent a major demand on public health services. Continuing surveillance for breast cancer is needed 5 years postdiagnosis, and prevalence data by disease duration are important for planning research on the quality of life of cancer survivors, because breast cancer is becoming even more a chronic disease.²¹ Estimates like those provided in this report support the recommendation by the Institute of Medicine that the National Institutes of

Health should strengthen its use of data that estimate the burden of disease in setting its priorities.²²

Conflict of Interest Disclosures

Supported by grants 263-MQ-514300 (to A.T.) and 263-MQ-320101 (to A.T.) from the National Institutes of Health.

References

1. Ries LAG, Melbert D, Krapcho M, et al. SEER Cancer Statistics Review, 1975-2005. Bethesda, Md: National Cancer Institute; 2007. Available at: http://seer.cancer.gov/csr/1975_2005. Accessed February 12, 2009.
2. Pickle LW, Hao Y, Jemal A, et al. A new method of estimating United States and state-level cancer incidence counts for the current calendar year. *CA Cancer J Clin*. 2007;57:30-42.
3. Surveillance Research Program, National Cancer Institute. SEER*Stat Software, Version 6.4.4. Bethesda, Md: National Cancer Institute; 2008. Available at: www.seer.cancer.gov/seerstat. Accessed February 12, 2009.

4. Surveillance, Epidemiology, and End Results (SEER) Program. SEER 9 Registries, 1975-2005. Bethesda, Md: National Cancer Institute; 2008 (released April 2008, based on the November 2007 submission). Available at: www.seer.cancer.gov. Accessed February 12, 2009.
5. USCensus Bureau PD. Interim Projections Consistent With Census 2000 (released March 2004). Available at: <http://www.census.gov/population/www/projections/usinterimproj/>. Accessed February 12, 2009.
6. Verdecchia A, De Angelis R, Capocaccia R, et al. The cure for colon cancer: results from the EUROCARE study. *Int J Cancer*. 1998;77:322-329.
7. De Angelis R, Capocaccia R, Hakulinen T, Soderman B, Verdecchia A. Mixture models for cancer survival analysis: application to population-based data with covariates. *Stat Med*. 1999;18:441-454.
8. Mariotto A, De Angelis R. The Method to Estimate Breast Cancer Prevalence at State Level: 2005-2015. Statistical Research and Applications Branch, NCI, Technical Report 2008-01. Available at: <http://srab.cancer.gov/reports/>. Accessed February 12, 2009.
9. Mariotto A, Capocaccia R, Verdecchia A, et al. Projecting SEER cancer survival rates to the US: an ecological regression approach. *Cancer Causes Control*. 2002;11:101-111.
10. Verdecchia A, Capocaccia R, Eqidi V, Golini A. A method for the estimation of chronic disease morbidity and trends from mortality data. *Stat Med*. 1989;8:201-216.
11. De Angelis G, De Angelis R, Frova L, Verdecchia A. MIA-MOD: a computer package to estimate chronic disease morbidity using mortality and survival data. *Comput Programs Biomed*. 1994;44:99-107.
12. North American Association of Central Cancer Registries (NAACCR). NAACCR Incidence-CINA Analytic File, 1995-2003. Springfield, Ill: NAACCR; 2008.
13. Pickle LW, Su Y. Within-state geographic patterns of health insurance coverage and health risk factors in the United States. *Am J Prev Med*. 2002;22:75-83.
14. Wells BL. Stage at diagnosis in breast cancer: race and socio-economic factors. *Am J Public Health*. 1992;82:1383-1385.
15. Capocaccia R, De Angelis R. Estimating the completeness of prevalence based on cancer registry data. *Stat Med*. 1997;16:425-440.
16. Merrill RM, Capocaccia R, Feuer EJ, Mariotto A. Cancer prevalence estimates based on tumour registry data in the Surveillance, Epidemiology, and End Results (SEER) Program. *Int J Epidemiol*. 2000;29:197-207.
17. Verdecchia A, De Angelis G, Capocaccia R. Estimation and projections of cancer prevalence from cancer registry data. *Stat Med*. 2002;21:3511-3526.
18. Hewitt ME, Greenfield S, Stovall EE, eds. From Cancer Patient to Cancer Survivor: Lost in Transition. Committee on Cancer Survivorship: Improving Care and Quality of Life. Institute of Medicine and National Research Council of the National Academies. Washington, DC: National Academies Press; 2005.
19. Coleman MP, Quaresma M, Berrino F, et al; CONCORD Working Group. Cancer survival in 5 continents: a worldwide population-based study (CONCORD). *Lancet Oncol*. 2008;9:730-756.
20. Ravdin PM, Cronin KA, Howlader N, et al. The decrease in breast-cancer incidence in 2003 in the United States. *N Engl J Med*. 2007;356:1670-1674.
21. Holland JC, Reznik I. Pathways for psychosocial care of cancer survivors. *Cancer*. 2005;104(11 suppl):2624-2637.
22. Committee on the NIH Research Priority-Setting Process. Scientific Opportunities and Public Needs: Improving Priority Setting and Public Input at the National Institutes of Health, Institute of Medicine. Washington, DC: National Academy Press; 1998.